Skip to main content

Posts

Showing posts with the label data

Proyección de Presidente con Aprendizaje de Máquinas

El ser humano siempre ha intentado predecir el futuro. El misticismo, la fortuna y la astrología han sido reflejo del deseo del humano de ver el provenir. Hoy en día tenemos otras herramientas para predecir el futuro. La ciencia provee, de alguna manera, una ventana al futuro por medio de utilizar leyes naturales y las leyes de la lógica para realizar inferencias. Por ejemplo, al soltar una piedra a la orilla de un puente, podemos predecir que la piedra caerá, esto debido a la Ley de la Gravedad.   Sin embargo, para muchos ámbitos de la vida aún no poseemos leyes naturales que puedan describirlos a cabalidad. Los terremotos, huracanes y la economía son algunos ejemplos de fenómenos que no podemos predecir del todo. Si bien es posible describirlos de una manera más certera, aún no poseemos un entendimiento de dichos fenómenos para poder formular leyes naturales como en la física o química. En el caso de las elecciones, no poseemos una teoría general que nos permita predecir los res

Elecciones en Guatemala y Ciencia de Datos

A mediados de este año tendremos nuevas elecciones en Guatemala. Las elecciones siempre son una excelente oportunidad para realizar investigación. Son sucesos que generan mucha expectativa y atención, y por ende, una buena fuente de datos y un muy buen laboratorio para experimentar modelos. Para las elecciones anteriores, realicé un modelo de proyección  que estimaba los resultados de la primera vuelta. Utilizando datos de las encuestas publicadas, hice un modelo utilizando Cadenas de Markov, el cual arrojó datos, con un mes de anticipación, con un margen de un 3% de los valores obtenidos en la primera vuelta.  Para estas elecciones, he decidido realizar otro análisis, esta vez un poco más a detalle. Para esto, he dividido el proceso en tres partes: Minería de datos Análisis de datos Proyección  Minería de Datos En este artículo describiré un poco de la primer parte del proceso. Antes de pensar en modelos de proyección, es importante considerar los datos que

Using math to extract information from social data

Many people say we are in the information era, but it seems that we are passed this. Nowadays, information is within everyone's reach, about everything and as much as we want. Data is not the issue anymore, at least most of the time. The real issue is  how to analyze the data.  It seems that having information is not the problem now, but actually having too much  data. One of the places in which we can find too much data are social networks. The richness of social networks is that they are a continuous flow of interesting data, what I like to call social data .  Social data is so rich as you can extract information from it in so many ways. One is to analyze what people express over a specific topic on social media. To this end, I developed  a way to identify the most important ideas found on a stream of user comments. Basically an algorithmic summary tool.  With a data set of a few tens of user comments, it is easy to grasp the general feelings and thoughts that